The identity for: cos (α + β) = (cos α)(cos β) - (sin α)(sin β)
sin α = (-3/5) and cos b = (-3,/4) are given, thus cos α and sin β need to be determined.
Using (cos α)^2 + (sin α)^2 = 1 and (cos β)^2 + (sin β)^2 = 1
(cos α)^2 + (-3/5)^2 = 1 (-3/4)^2 + (sin β)^2 = 1
(cos α)^2 + (9/25) = 1 (9/16) + (sin β)^2 = 1
(cos α)^2 = (25/25) - (9/25) (sin β)^2 = (16/16) - (9/16)
(cos α)^2 = 16/25 (sin β)^2 = (7/16)
cos α = ±(4/5) (sin β) = ±(√7/4)
α is quadrant III β is in Quadrant II
cos α = (-4/5) in Quadrant III sin β = (√7/4) in quadrant II
Thus cos (α + β) = (cos α)(cos β) - (sin α)(sin β)
= (-4/5)(-3/4) - (√7/4)(-3/5)
= (12/20) + (3√7/20)
= 12 +3√7
20