d(e-x sin x )/dx=e-xcos x +(sinx)(- e-x )=e-x(cosx-sinx)
d(e-x cos x)/dx= -e-xsinx +(-e-x)cosx =-e-x(sinx +cosx)
∫ e-x sin x dx= e-x(sinx -cosx)/2 for [0, π] =(e-π +1)/2
Sf C.
asked 10/04/21Consider the functions f, g, defined for x∈R. given by f(x)=e-x sin x and g(x)= e-x cos x
(a) Find
i. f'(x)
iI. g'(x)
(b) Hence, or otherwise, find ∫ e-x sin x dx , between π and 0.
d(e-x sin x )/dx=e-xcos x +(sinx)(- e-x )=e-x(cosx-sinx)
d(e-x cos x)/dx= -e-xsinx +(-e-x)cosx =-e-x(sinx +cosx)
∫ e-x sin x dx= e-x(sinx -cosx)/2 for [0, π] =(e-π +1)/2
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.