xy2+zu+v2=3
x3z+2y-uv=2
xu+yv-xyz=1
defines implicitly x y and z as a function of u and v
Find ∂y/∂v and ∂z/∂u at values
[∂/∂v] (xy2+zu+v2) =0 ⇒ 2x y ∂y/∂v + u ∂z/∂v +2v = 0 and at x=y=z=u=v=1 ⇒ ∂y/∂v + ∂z/∂v = -2 ( Eq. 1)
[∂/∂v]( x3z+2y-uv ) =0 ⇒3x2 z ∂x/∂v +x3∂z/∂v + 2 ∂y/∂v - u = 0 and at x=y=z=u=v=1 ⇒
3∂x/∂v+∂z/∂v +2 ∂y/∂v =1 ( Eq. 2)
[∂/∂v] ( xu+yv-xyz )= 0 ⇒u∂x/∂v +y + v∂y/∂v +yz∂x/∂v + xz ∂y/∂v + xy ∂z/∂v = 0 and at x=y=z=u=v=1 ⇒
∂x/∂v +∂y/∂v +∂x/∂v + ∂y/∂v +∂z/∂v = 0 ⇒ 2∂x/∂v +2 ∂y/∂v +∂z/∂v = 0 ( Eq.3)
Now notice That Equations 1, 2, and 3 form a linear 3x3 system By letting ∂x/∂v = λ ,∂y/∂v= μ and ∂z/∂v =ξ
we have the 3x3 linear system.
μ + ξ = -2
3λ+2μ +ξ =1
2λ +2 μ +ξ = 0
Now the ball is in your court