
William W. answered 09/21/21
Experienced Tutor and Retired Engineer
∠1 and ∠4 are a linear pair therefore m∠1 + m∠4 = 180
∠2 and ∠3 are a linear pair therefore m∠2 + m∠3 = 180
Using substitution then m∠1 + m∠4 = m∠2 + m∠3
But since ∠1 ≅ ∠2 then m∠1 = m∠2
Using substitution then m∠1 + m∠4 = m∠1 + m∠3
Using the subtraction property of equality we can subtract m∠1 from both sides giving:
m∠4 = m∠3
If the measures are equal then ∠4 ≅ ∠3
Then you can repeat the same sort of process:
∠1 and ∠2 are a linear pair therefore m∠1 + m∠2 = 180
∠1 and ∠4 are a linear pair therefore m∠1 + m∠4 = 180
m∠1 + m∠2 = m∠1 + m∠4
m∠2 = m∠4
∠2 ≅ ∠4
So if ∠1 ≅ ∠2 and ∠2 ≅ ∠4 and ∠4 ≅ ∠3 then ∠1 ≅ ∠2 ≅ ∠3 ≅ ∠4