cot(−x)cos(−x)+sin(−x)=−1/f(x)
By negative angle identity:
-cot(x)cos(x)-sin(x) = -1/f(x)
By quotient identity for cot (x)
-[cos(x)/sin(x)] cos(x) -sin(x) = -1/f(x)
-cos2(x)/ sin(x) - sin(x) = -1/f(x)
[-cos2(x)- sin2(x)]/sin(x)= -1/f(x)
factor out negative one on left side:
-[cos2(x)+sin2(x)]/sin(x) = -1/f(x)
Pythagorean Identity: cos2(x)+sin2(x) =1
-1/sin(x) = -1/f(x)
Get the reciprocal of both sides:
-sin(x) =-f(x)
Therefore:
f(x) = sin(x)