Verify that the curve completes one loop from 0 to π radians so that bounds the integral.
The arc length segment is given by √[(dy)2 + (dx)2]
Since x and y are functions of θ via r, we determine each separately and determine the differentials.
r = 12 sinθ so x = 12 sin θ cos θ , y = 12 sin2 θ
dx = 12 cos2 θ - 12 sin2 θ dθ = 12 cos (2θ) dθ, dy = 24 sin θ cos θ = 12 sin (2θ) dθ
Arc length L =o∫π √[(dy)2 +(dx)2 ] =o∫π √[(12 sin (2θ))2 + (12 cos (2θ))2 ]dθ =o∫π 12 dθ = 12π