J.R. S. answered 02/16/21
Ph.D. University Professor with 10+ years Tutoring Experience
Clausius-Clapeyron Equation:
ln(P2/P1) = - ∆Hvap/R (1/T2 - 1/T1)
P1 = 92.0 torr
P2 = 366.0 torr
T1 = 23C + 273 = 296K
T2 = 45C + 273 = 318K
R = 8.314 J/K-mol
Solve for ∆Hvap
ln(366/92) = -∆Hvap/8.314 (1/318 - 1/296)
1.38 = -∆Hvap/8.314 (0.003145 - 0.003378)
1.38 = 0.000233∆Hvap/8.314
∆Hvap = 49,242 J/mol = 49.2 kJ/mol
Normal boiling point would be when atmospheric pressure is 1 atm or 760 torr...
P1 = 92 torr
P2 = 760 torr
T1 = 296K
T2 = ?
∆Hvap = 49.2 kJ/mol
R = 0.008314 kJ/Kmol (note changed units to match those of ∆Hvap)
Solve for T2:
ln(760/92) = -49.2/0.008314 (1/T2 - 1/296)
2.11 = -5918 (1/T2 - 0.003378)
2.11 = -5918/T2 + 19.99
T2 = 331K = 58ºC