
Yefim S. answered 01/25/21
Math Tutor with Experience
limf(x) x →2- = limf(x) x→2+ = f(2);
limf(x) x →2- = lim(x2 - 3bx + 2) x →2 = 4 - 6b + 2 = 6 - 6b
limf(x) x →2+ = lim(2bx2 - 8) x →2 = 2b·4 - 8 = 8b - 8; f(2) = 4 - 6b + 2 = 6 - 6b;
6 - 6b = = 8b - 8; 14b [= 14 b = 1.
Answer: for f(x) to be continues at x = 2 b must be equel 1.