Kathy P. answered 01/16/21
Mechanical Engineer with 10+ years of teaching and tutoring experience
Given: tan(x) = 3*tan(y)
Prove: tan(x - y) = sin(2y) / [ 2 - cos(2y) ]
PROOF:
sin(2y) / [ 2 - cos(2y) ] = tan(x - y) Given
= [ tan(x) - tan(y) ] / [ 1 + tan(x)*tan(y) ] Difference Formula for tan(x-y)
= [ 3*tan(y) - tan(y)] / [ 1 + 3*tan(y)*tan(y) ] Substutite for tan(x)
= [ 2*tan(y)] / [ 1 + 3*[tan(y)]^2 ] Now, RHS in terms of y only
= [ 2*tan(y)] / { [ (cos(y))^2 + 3*(sin(y))^2 ] / (cos(y))^2 }
= [ 2*tan(y)* (cos(y))^2 ] / [ (cos(y))^2 + 3*(sin(y))^2 ]
= [ 2*tan(y)*(cos(y))^2 ] / [ (cos(y))^2 + 3*(sin(y))^2 ]
= [ 2*tan(y)*(cos(y))^2 ] / [ 1 + 2*(sin(y))^2 ]
= [ 2*sin(y)*cos(y) ] / [ 1 + 2*( (1 + cos(2y)) / 2 ) ]
= [ sin(2y) ] / [ 1 + 1 + cos(2y) ]
= [ sin(2y) ] / [ 2 + cos(2y) ]
= [ sin(2y) ] / [ 2 - cos(2y) ] Because cos(u) = - cos(u)
DONE!