
Jon S. answered 12/22/20
Patient and Knowledgeable Math and English Tutor
x = stick length N(99.9,0.19)
z = (x - mean)/std dev to transform x to standard normal distribution N(0,1)
a) P(x > 100.11) = P(z > (100.11 - 99.9)/0.19) = P(z > 1.11) = 1 - P(z < 1.11) = 1 - 0.8665 = 0.1335
xbar = mean stick length N(99.9,0.19)
z = (xbar - mean)/(std dev/sqrt(sample size) to transform xbar to standard normal distribution N(0,1)
b) P(xbar < 99.88) = P(z < (99.88 - 99.9)/(0.19/sqrt(32)) = P(z < -0.60) = 0.2743
c) P(xbar > 99.93) = P(z > (99.93 - 99.9)/(0.19/sqrt(26)) = P(z > 0.81) = 1 - P(z < 0.81) = 1 - 0.7910 = 0.209
d)_ P(99.89 < xbar < 99.92) = P((99.89-99.9)/(0.19/sqrt(42)) < z < P((99.92-99.9)/(0.19/sqrt(42)) = P(-0.34< z < 0.68) = P(z < 0.68) - P(z < -0.34) = 0.7517 - 0.3669 = 0.3848
e) 92nd percentile corresponds to a z-score of 1.45
using formula z = (xbar - mean)/(std dev/sqrt(sample size):
1.45 = (xbar - 99.9)/(0.19/sqrt(38))
1.45 * (0.19/sqrt(38)) + 99.9 = xbar
99.94 = XBAR