Asked • 12/21/20

Prove that among all the 2^(n−1) compositions of n, the part k occurs a total of (n − k + 3)2^(n−k−2) times

Let 1 ≤ k < n. Prove that among all the 2n−1compositions of n, the part k occurs a total of (n − k + 3)2n−k−2 times. For instance, if n = 4 and k = 2, then the part 2 appears once in 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and twice in 2 + 2, for a total of five times.

1 Expert Answer

By:

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.