
William W. answered 12/21/20
Experienced Tutor and Retired Engineer
I'll work with the left side of the equation:
tan(x)[sin(x) + cos(x)]2 + [1 - sec2(x)]cot(x)
Rearranging the identity 1 + tan2(x) = sec2(x) we get 1 - sec2(x) = -tan2(x) and substituting we get:
tan(x)[sin(x) + cos(x)]2 + [-tan2(x)]cot(x) then using tan(x)cot(x) = 1 we get:
tan(x)[sin(x) + cos(x)]2 - tan(x) then factoring out tan(x) we get:
tan(x)[(sin(x) + cos(x))2 - 1] then multiplying out the (sin(x) + cos(x))2 we get:
tan(x)[sin2(x) + 2sin(x)cos(x) + cos2(x) - 1] then grouping sin2(x) + cos2(x) and using in2(x) + cos2(x) = 1:
tan(x)[2sin(x)cos(x) + 1 - 1] and simplifying:
2tan(x)sin(x)cos(x) then using tan(x) = sin(x)/cos(x) we get:
2sin2(x)