Problem:
Verify the identity
(2cos^2 alpha-1)^2 /cos^4 alpha -sin^4 alpha = 1-2sin^2 alpha
Solution:
Let x = alpha
Rewrite as (note the added parentheses in the denominator needed to make this identity true. I graphed it.)
(2cos^2(x) - 1)^2 / (cos^4(x) - sin^4(x)) = 1 - 2*sin^2(x)
Double Angle Formulas:
a) cos(2x) = cos^2(x) - sin^2(x)
b) cos(2x) = 2*cos^2(x) - 1
c) cos(2x) = 1 - 2*sin^2(x)
Part 1:
Using formula b)
(2cos^2(x) - 1)^2
= [cos(2x)]^2
Part 2:
Using formula a) at the last line
cos^4(x) - sin^4(x)
= cos^2(x) * cos^2(x) - sin^2(x) * sin^2(x)
= cos^2(x) * (1 - sin^2(x)) - sin^2(x) * (1 - cos^2(x))
= cos^2(x) - sin^2(x)*cos^2(x) - sin^2(x) + sin^2(x) * cos^2(x)
= cos^2(x) - sin^2(x)
= cos(2x)
Part 3:
Using formula c)
1 - 2*sin^2(x)
= cos(2x)
Putting the first two together we get:
[cos(2x)]^2 / cos(2x)
[cos(2x) * cos^2(x)] / cos(2x) = cos(2x)
but this is the same as the third part.
cos(2x) = cos(2x)
Proven