sin2∅cot∅ = 2-2sin2∅ given
[sin2∅][cot∅] = separate functions
[sin(∅ + ∅)][ cot∅ ] = sine of double angle = sine of sum of angles
[sin∅cos∅ + cos∅sin∅][ cot∅ ] = sine of sum of angles identity
[2sin∅cos∅] [ cot∅ ] = add terms
[2sin∅cos∅] [ cos∅/sin∅ ] = cotangent as division of cosine over sine
[2sin∅cos∅] [ cos∅/sin∅ ] = simplify
[ 2cos∅ ] [ cos∅ ] = simplify
[ 2cos2∅ ] = simplify
[ 2(1 - sin2∅)] = Pythagorean identity
2 - 2sin2∅ = 2 - 2sin2∅ distrubute