Mark M. answered 11/12/20
Mathematics Teacher - NCLB Highly Qualified
By Demoivre's Theorem
-2(cos 270° / 3 + i sin 270º / 3)
-2(cos 630º / 3 + i sin 630º / 3)
-2(cos 990º / 3 + i sin 990º / 3)
Mark M. answered 11/12/20
Mathematics Teacher - NCLB Highly Qualified
By Demoivre's Theorem
-2(cos 270° / 3 + i sin 270º / 3)
-2(cos 630º / 3 + i sin 630º / 3)
-2(cos 990º / 3 + i sin 990º / 3)
What are the 3 cube roots of -8i ?
Let z3 = -8i. Solve for z.
-8i = 8(-i) = 23(-i), -i = i3
One root is z1 = 0 + 2i.
De Moivre’s Theorem is needed to find the other two roots:
z = r(cos(A)+i sin(A))
zN = [r(cos(A)+i sin(A))]N = rN(cos(N*A)+i sin(N*A))
For z3 = rN(cos(N*A)+i sin(N*A)) = 8 ( 0 + i (-1) ), substitute N=3
to get r3=8, r=+2, cos(3A)=0, and sin(3A)=-1.
Solve for 3A.
Notice that 3A = the angle between the negative imaginary y-axis and the positive real x-axis in the xy cartesian plane.
There are 3 possible values for 3A, which means 3 possible values for A
and 3 possible values for z: z = 2(cos(A)+i sin(A)).
One value for 3A = 270 degrees = 3𝜋/2 radians, with A1 = 90 degrees = 𝜋/2 radians = the positive imaginary y-axis. This corresponds to the previous solution: z1 = 2i.
The other two roots, z2 and z3 can be found by adding 360 degrees = 2𝜋 radians and 720 degrees = 4𝜋 radians to the 3A angle for z3. All three of these angles correspond to the negative imaginary y-axis and can be used for 3A:
Use 3A2 = 3𝜋/2 + 2𝜋 radians, for z2
Use 3A3 = 3𝜋/2 + 4𝜋 radians, for z3
To calculate z2, A2 = 7𝜋/6 radians, cos(A2) = -(√3)/2, sin(A)=-1/2
To calculate z3, A3 = 11𝜋/6 radians, cos(A3) = +(√3)/2, sin(A)=-1/2
Z2 = r(cos A2 + i sin A2) = 2( -(√3)/2-i/2) = -(√3) - i
Z3 = r(cos A3 + i sin A3) = 2(+(√3)/2-i/2) = +(√3) - i
Check:
Z23 = (-(√3)-i)3 = (3 + 2i (√3) -1)(-(√3)-i) = (2 + 2i (√3))(-(√3)-i)
= -2*(√3)-2i-6i+2*(√3) = -8i
Z33 = (+(√3)-i)3 = (3 - 2i (√3) -1)(+(√3)-i) = (2 - 2i (√3))(+(√3)-i)
= 2*(√3)-2i-6i-2*(√3) = -8i
Marc L. answered 11/12/20
Helping others understand things one step at a time
it would be 2i:
2i*2i*2i = 8i3 = 8i2i = 8(-1)i = -8i
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Sherwood P.
11/13/20