
Patrick L. answered 11/13/20
BA in Economics with Statistics Minor
Br = brown M&M's; Y = yellow M&M's; R = red M&M's;
B = blue M&M's; O = orange M&M's; G = green M&M's
P(Br) = 0.12; P(Y) = 0.15; P(R) = 0.12;
P(B) = 0.23; P(O) = 0.23; P(G) = 0.15
n = 6 peanut M&M's in the large bag
P(exactly 4 blue M&M's) = C(6,4)*(0.12)4*(0.88)2 = 0.002409
P(4 or 5 blue M&M's) = C(6,4)*(0.12)4*(0.88)2 + C(6,5)*(0.12)5*(0.88)1
= 0.002409 + 0.0001314
= 0.0025404
P(up to 4 blue M&M's) = 1 - P(more than 4 blue M&M's)
= 1 - [C(6,5)*(0.12)5*(0.88)1 + C(6,6)*(0.12)6*(0.88)0]
= 1 - 0.0001344
≈ 0.9999
P(at least 4 blue M&M's) = C(6,4)*(0.12)4*(0.88)2 + C(6,5)*(0.12)5*(0.88)1 + C(6,6)*(0.12)6*(0.88)0
= 0.002409 + 0.0001314 + 0.000002986
≈ 0.002543
The expected value from the binomial distribution is np: (6)(0.12) = 0.72
The standard deviation from the binomial distribution is √npq: √(6)(0.12)(0.88) = 0.796
Geisa R.
How did you find 0.12 (p)?05/24/22