J.R. S. answered 10/29/20
Ph.D. University Professor with 10+ years Tutoring Experience
Hess' Law allows us to use known values for equations to calculate certain unknown values for another equation.
5 C(s) + 6H2(g) ==> C5H12(l) ... TARGET EQUATION
Given:
(1) C5H12(l) + 8O2(g) ==> 5CO2(g) + 6H2O(g) ... ∆H = -327.5 kJ
(2) C(s) + O2(g) ==> CO2(g) ... ΔH= -393.5kJ
(3) 2H2(g) + O2 (g) ==> 2H2O(g) ... ΔH = -483.5 kJ
Procedure:
reverse (1): 5CO2(g) + 6H2O(g) ==> C5H12(l) + 8O2(g) ... ∆H = +327.5 kJ
copy (2)x5: 5C(s) + 5O2(g) ==> 5CO2(g) ... ∆H = -1967.5 kJ
copy(3)x3: 6H2(g) + 3O2 (g) ==> 6H2O(g) ... ∆H = -1450.5 kJ
Add up the 3 equations and combine and cancel like items to obtain...
5CO2(g) + 6H2O(g) + 5C(s) + 5O2(g)+ 6H2(g) + 3O2 (g) => C5H12(l) + 8O2(g) + 5CO2(g) + 6H2O(g)
5C(s) + 6H2(g) ==> C5H12(l) ... TARGET EQUATION
∆H = 327.5 kJ + -1967.5 kJ + -1450.5 kJ = -3090.5 kJ = -3091 kJ