J.R. S. answered 07/24/20
Ph.D. University Professor with 10+ years Tutoring Experience
Use Hess' Law to find the ∆G for the reaction:
CH4(g) ==> 2H2(g) + C(s) ... ∆G = +5.1 kJ
2H2(g) + O2(g) => 2H2O(l) ... ∆G = -47.4 kJ
C(s) + O2(g) => CO2(g) ... ∆G = -39.4 kJ
CH4(g) + 2H2 + O2 + C + O2 ==> 2H2 + C + 2H2O + CO2
CH4(g) + 2O2(g) ==> CO2(g) + 2H2O ... ∆G = 5.1 kJ - 47.4 kJ - 39.4 kJ = -81.7 kJ
Now we can use ∆G = -RT ln K to find the equilibrium constant (remember to use units of R and G that agree)
-81700 J = -8.314 J/kmol x 298K ln K
ln K = 32.98
K = 2.1x1014
CH4(g) + 2O2(g) ⇌ CO2(g) + 2H2O(l)
0.125..... . 0.125.......... .. ..0........... ...0........Initial
-x..............-2x...................+x............+2x....................Change
0.125-x..0.125-2x............x................2x..............Equilibrium
K = 2.1x1014 = (x)(2x)/(0.125-x)(0.125-2x)
Solve for x and that will be [CO2]. [H2O] will be twice that and [CH4] = 0.125-x and [O2] = 0.125-2x.
Then convert concentrations to mass using the molar mass of each species.