
Yefim S. answered 07/21/20
Math Tutor with Experience
Let find popint x- coordinate of intrsection point: 2cox = 2sinx; tanx = 1, x = 5π/ only intersection on interval
[π, 2π]. So, A = ∫π5π/4(2sinx - 2cosx)dx + ∫5π/42π(2cosx - 2sinx)dx = (- 2cosx - 2sinx)π5π/4 + (2sinx + 2cosx)5π/42π = (√2 + √2) - (2 - 0) + (0 + 2) - (- √2 - √2) = 4√2;
Area A = 4√2 ≈ 5.657
Zena K.
Thank you but this is not correct. :(07/21/20