
Patrick B. answered 04/18/20
Math and computer tutor/teacher
Part A:
h(t) = -16t^2 + Vo t + Ho
where -16 is the gravity constant, Vo is the
intital velocity, and Ho is the initial height
at time t=0
Vo=219 and Ho=80
h(t) = -16t^2 + 219t + 80
Part B:
h(t) = -16t^2 + 219t + 80
A=-16 B= 219 C = 80
tMax= -B/(2A) = -219/(2*-16) = -219/-32 = 6.84375
h(6.84375) = 829.390625 is the max height
Part C:
-16t^2 + 219t + 80 > 546
-16t^2 + 219t - 466 > 0 <--- subtracts 546
16t^2 - 219t + 455 < 0 <--- multiplies or divides by -1, changes the sign
If equal to zero, the quadratic formula says:
t = [219 +or- sqrt ( (-219)^2 - 4(16)(455))] / 32
= [219 +or- sqrt(18841)]/32
= [219 +or- sqrt(18841)]/32
So the rocket is beyond 546 feet when [219 - sqrt(18841)]/32 < t < [219 + sqrt(18841)]/32
sqrt(18841) is APPROXIMATELY 137.262522197430133044697162733
so the time frame is APPROXIMATELY 2.55+ seconds to 11.13+ seconds
Part D:
-16 t^2 + 219t + 80 = 0
16t^2 -219t - 80 = 0
t = [219 +or- sqrt( 219^2 - 4(16)(-80)] / 32
= [219 +or- sqrt( 219^2 - 4(16)(-80)] / 32
The negative branch results in negative measures
t = [219 + sqrt(53081)]/32
which is APPROXIMATELY 14.04353+ seconds