J.R. S. answered 01/25/20
Ph.D. University Professor with 10+ years Tutoring Experience
Born-Haber Cycle and Hess' Law:
M(s) + X2(g) ---------------------------> MX2(s)
M(s) ==> M(g) ∆Hsub = 141 kJ/mol
M(g) ==> M+(g) IE1 = 705 kJ/mol
M+(g) ==> M2+(g) IE2 = 1391 kJ/mol
X2(g) ==> 2X(g) BE = 199 kJ/mol
2X(g) + 2e- ==> 2X-(g) EA = 2x-311 kJ/mol = -622 kJ/mol
M2+(g) + 2X-(g) ==> MX2(s) Lattice Energy = LE = ?
∆Hf = ∆Hsub + IE1 + IE2 + BE + 2EA + LE
-973 = 141 + 705 + 1391 + 199 -622 + LE
-973 = 1814 + LE
LE = -2787 kJ/mol