Mark M. answered 11/14/19
Retired Math prof with teaching and tutoring experience in trig.
cotθ + 4cscθ = 6
cosθ / sinθ + 4 / sinθ = 6
cosθ + 4 = 6sinθ
cosθ - 6sinθ = -4
Multiply and divide the left hand side by √[12 + (-6)2] = √37
√37[(1/√37)cosθ - (6/√37)sinθ] = -4
Plot the point (1,6) and draw the right triangle with vertices (0,0), (1,0), and (1,6). Let β be the acute angle of the triangle with vertex at (0,0).
Then, cosβ = 1/√37 and sinβ = 6/√37
So, we have √37[cosβcosθ - sinβsinθ) = -4
√37cos(θ+β) = -4, where β = Cos-1(1/√37) = 80.54°
cos(θ + 80.54°) = -0.6576
θ + 80.54° = 180° - Cos-1(0.6576) or 180° + Cos-1(0.6576)
θ + 80.54° = 131.12° or 228.88°
θ = 50.58° or 148.34°