Hi Vin C.,
Its probably too late but anyway.
The det. = cos(x)*[ 1*cos(x) - cos(y)*cos(z)] - cos(z)*[cos(x)*cos(y) - cos(z)*1] + 1*[cos(y)*cos(y) - 1*1]
= cos2(x) - cos(x)*cos(y)*cos(z) - cos(x)*cos(y)*cos(z) + cos2(z) + cos2(y) - 1
= cos2(x) + cos2(y) + cos2(z) - 2*cos(x)*cos(y)*cos(z) - 1
Using half-angle identity: cos2(u) = 1/2 + cos(2u)/2
cos2(x) + cos2(y) + cos2(z) =
[1/2 + cos(2x)/2] + [1/2 + cos(2y)/2] + [1/2 + cos(2z)/2] =
3/2 +[cos(2x) +cos(2y) + cos(2z)]/2
Using product-to-sum formula: cos(u)*cos(v) = [cos(u+v) +cos(u-v)]/2
2*cos(x)*cos(y)*cos(z) =
2*[cos(x+y) + cos(x-y)]*cos(z)/2 =, ....(2's cancel)
cos(x+y)*cos(z) + cos(x-y)*cos(z) =
[cos(x+y+z) + cos(x+y-z) + cos(x-y+z) + cos(x-y-z)]/2 = ,...(x+y+z=2π; x+y=2π-z; x+z=2π-y; -y-z=x-2π)
[cos(2π) + cos(2π-2z) + cos(2π-2y) + cos(2x-2π)]/2 =, ...(add/sub formulas)
[1 + cos(2x) + cos(2y) +cos(2z)]/2
Combine:
3/2 +[cos(2x) +cos(2y) + cos(2z)]/2 - [1 + cos(2x) + cos(2y) +cos(2z)]/2 -1 = 0
I hope this helps, Joe.