In the diagram, angle k is an exterior angle. Angles c, g, o ,s, and w are corresponding angles. They are in the same position, but on different lines. Corresponding angles are equal. Therefore they are all 89 degrees.
A straight line measures 180 degrees.
Angle i is on the same line as angle k. Therefore is angle k is 89, angle i = (180-89) = 91.
Using this same theory the following angles are on the same line and measure 180 degrees:
Angle c = 89, Angle a = 91
Angle g = 89, Angle e = 91
Angle k = 89, Angle i = 91
Angle o = 89, Angle m = 91
Angle s = 89, Angle q = 91
Angle w = 89, Angle u = 91
The solution to your question derived from the information above is as follows;
Angle s = 89
Angle e= 91
Angle q= 91
Angle u= 91
Angle o=89
Angle i=91
Angle a = 91
![[asy]
unitsize(35);
pair u=(cos(-9*pi/180),sin(-9*pi/180));
pair v=(cos(80*pi/180),sin(80*pi/180));
pair d=(0.06,0); pair e=(0,-0.03);
draw((-3.75)*u--2.75*u);
draw((-3)*u-v--(-3)*u+v);
draw((-2)*u-v--(-2)*u+v);
draw((-1)*u-v--(-1)*u+v);
draw(-v--v);
draw(u-v--u+v);
draw(2u-v--2u+v);
label("$a$",-3u+d,NW);
label("$b$",-3u+e,NE);
label("$c$",-3u-e,SW);
label("$d$",-3u-d,SE);
label("$e$",-2u+d,NW);
label("$f$",-2u+e,NE);
label("$g$",-2u-e,SW);
label("$h$",-2u-d,SE);
label("$i$",-u+d,NW);
label("$j$",-u+e,NE);
label("$k$",-u-e,SW);
label("$\ell$",-u-d,SE);
label("$m$",d,NW);
label("$n$",e,NE);
label("$o$",-e,SW);
label("$p$",-d,SE);
label("$q$",u+d,NW);
label("$r$",u+e,NE);
label("$s$",u-e,SW);
label("$t$",u-d,SE);
label("$u$",2u+d,NW);
label("$v$",2u+e,NE);
label("$w$",2u-e,SW);
label("$x$",2u-d,SE);
[/asy]](https://latex.artofproblemsolving.com/b/d/2/bd26c8581a69e84689ba814cd328ebcf18b49c1d.png)