Tom N. answered 03/27/19
Strong proficiency in elementary and advanced mathematics
a) Int 3xdx/(x+1)3 using substitution let u=x+1 then du =dx x+1=u x= u - 1 integral becomes 3 (u-1) du/u3 this gives
Integral of 3du/u2 - 3du/u3 which equals -3/u +3/2 u2 which becomes 3/2(x+1)2 -3/(x+1) +C this gives
(-6x - 3)/2(x+1)2 +C
b) Int(4x2 -4x -3)/x2(x-3) by partial fractions use A/x +B/x2 +C/(x-3) this becomes Ax2 -3Ax +Bx -3B +Cx2
matching coefficients gives 4=A+C, -4=-3A +B, -3B= -3. Then B=1 A=5/5 and C=7/3 So the integral becomes Int( 5dx/3x +dx/x2 +7dx/3(x-3) ) Doing the integrals gives 5log|x|/3 -1/x +7log|x-3|/3 + C
c) Int e2xcos(2x)dx by parts let u=e2x dv= cos(2x) then du = 2e2x dx and v= sin(2x)/2 so Int = e2xsin(2x)/2 - Int e2x sin(2)dx let u=e2x and dv= sin(2x)dx so again du =2e2xdx and v= - cos(2x)/2 so now the original integral equals e2x sin(2x)/2 + e2xcos(2x)/2 - Int e2xcos(2x)dx moving this last term to the other side gives
2Int e2xcos(2x)dx = e2xsin(2x)/2 +e2xcos(2x)/2 +C. Therefore Int e2xcos(2x)dx = e2xsin(2x)/4 + e2xcos(2x)/4 + C.