Andy C. answered 07/03/18
Tutor
4.9
(27)
Math/Physics Tutor
Hello Kate...
did some good fishin' at the Crooked Horse out there in Kattanning...
since p=0.5, the normal distribution shall give a fair estimation to the binomial.
mean U = np = (14)(0.5) = 7 >5 which further supports the approximation, as is nq = 14(1-1/2) = (14)(1/2)=7
stddev s =sqrt( npq) = sqrt((14)(0.5)(1-0.5)) = sqrt((14)(0.5)(0.5)) = sqrt(7/2) = sqrt(3.5) = 1.8708286934....
Prob ( X<7) = Prob ( x' < 6.5 ) <--- continuity correction
= Prob( z < (6.5-7)/1.8708286934... ) <---- z-score
= Prob (- 0.267261242....)
0.3936 <--- per the normal distribution table
The EXACT ANSWER 0.3952.. is given in the following table;
The error is less than 1/2% = 0.005, or the 3rd decimal place
BINOMIAL Probabilities N=14, p=1/2, q = 1-1/2 = 1/2
k (N choose k) p^k (1-p)^(N-k) Prob(X=k)
0 1 1 6.10352E-05 6.10352E-05 <--- essentially zero
1 14 0.5 0.00012207 0.000854492
2 91 0.25 0.000244141 0.005554199
3 364 0.125 0.000488281 0.022216797
4 1001 0.0625 0.000976563 0.061096191
5 2002 0.03125 0.001953125 0.122192383
6 3003 0.015625 0.00390625 0.183288574
TOTAL 0.395263672
0 1 1 6.10352E-05 6.10352E-05 <--- essentially zero
1 14 0.5 0.00012207 0.000854492
2 91 0.25 0.000244141 0.005554199
3 364 0.125 0.000488281 0.022216797
4 1001 0.0625 0.000976563 0.061096191
5 2002 0.03125 0.001953125 0.122192383
6 3003 0.015625 0.00390625 0.183288574
TOTAL 0.395263672