
Umar S.
asked 01/13/18TanX + secX ×tanX - secX =2(tanX. CosecX- Cox.secX
1 Expert Answer

Jonathan T. answered 10/29/23
Calculus, Linear Algebra, and Differential Equations for College
Let's simplify the given trigonometric expression step by step:
Given expression: \( \tan(x) + \sec(x) \cdot \tan(x) - \sec(x) = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 1: Factor out a common factor of \( \tan(x) \) on the left side:
\( \tan(x) \cdot (1 + \sec(x)) - \sec(x) = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 2: Rewrite \( \sec(x) \) as \( \frac{1}{\cos(x)} \):
\( \tan(x) \cdot (1 + \frac{1}{\cos(x)}) - \frac{1}{\cos(x)} = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 3: Find a common denominator on the left side:
\( \frac{\tan(x) \cdot (\cos(x) + 1) - 1}{\cos(x)} = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 4: Multiply both sides by \( \cos(x) \) to clear the fraction:
\( \tan(x) \cdot (\cos(x) + 1) - 1 = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 5: Distribute on both sides:
\( \tan(x) \cdot \cos(x) + \tan(x) - 1 = 2(\tan(x) \cdot \csc(x) - \cot(x) \cdot \sec(x)) \)
Step 6: Use trigonometric identities to simplify further:
\( \sin(x) + \tan(x) - 1 = 2(\frac{1}{\sin(x)} - \cos(x)) \)
Step 7: Multiply both sides by \( \sin(x) \) to clear the fractions:
\( \sin(x) \cdot \sin(x) + \sin(x) \cdot \tan(x) - \sin(x) = 2 - 2 \cdot \cos(x) \cdot \sin(x) \)
Step 8: Simplify and collect like terms:
\( \sin^2(x) + \sin(x) \cdot \tan(x) - \sin(x) = 2 - 2 \cdot \cos(x) \cdot \sin(x) \)
Step 9: Use the trigonometric identity \( \sin^2(x) = 1 - \cos^2(x) \) to replace \( \sin^2(x) \):
\( 1 - \cos^2(x) + \sin(x) \cdot \tan(x) - \sin(x) = 2 - 2 \cdot \cos(x) \cdot \sin(x) \)
Step 10: Move all terms to one side of the equation:
\( \cos^2(x) + \sin(x) \cdot \tan(x) - \sin(x) - 2 \cdot \cos(x) \cdot \sin(x) + 1 - 2 = 0 \)
Step 11: Combine like terms:
\( \cos^2(x) + \sin(x) \cdot \tan(x) - \sin(x) - 2 \cdot \cos(x) \cdot \sin(x) - 1 = 0 \)
Now, you have a quadratic equation in terms of trigonometric functions. This equation can be further simplified or solved depending on the context of your problem.
Still looking for help? Get the right answer, fast.
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Mark M.
01/13/18