Pete R. answered 04/15/14
Tutor
New to Wyzant
Experienced Math Tutor
dy/dx = (chain rule) 2nx(x2+1)n-1
When x=1, we have: 2n(2)n-1
which equals: 4n(2)n-2
[since (2)n-1 = 2(2)n-2]
d2y/dx2=(product and chain rule) 2nx(2x)(n-1)(x2+1)n-2 + 2n(x2+1)n-1
When x=1, we have 2n(2(n-1)(2)n-2)+2n(2)n-1 (again: (2)n-1 = 2(2)n-1)
which simplifies to 4n(n-1)(2)n-2+4n(2)n-2
leading to (2)n-2(4n(n-1) + 4n) -{factoring out (2)n-2}
4n(n-1) + 4n = 4n2 - 4n + 4n = 4n2
SO, when x-1, d2y/dx2 = 4n2(2)n-2
Now, the ratio of dy/dx (when x=1) to d2y/dx2 (when x=1) is
4n(2)n-2
___________
4n2(2)n-2
which equals (drum roll) 1:n