solve the equation on the interval 0≤Θ<2π . round answers to 2 decimal places

3sec

^{2}Θ=2tan^{2}Θ+tanΘ+4^{ }solve the equation on the interval 0≤Θ<2π . round answers to 2 decimal places

3sec^{2}Θ=2tan^{2}Θ+tanΘ+4^{
}

Tutors, please sign in to answer this question.

Westford, MA

Solve 3sec^2(θ) = 2tan^2(θ) + tan(θ) + 4

on the interval 0≤θ<2π.

Round answers to 2 decimal places.

Pythagorean Identity:

sin^2(θ) + cos^2(θ) = 1

sin^2(θ)/cos^2(θ) + cos^2(θ)/cos^2(θ) = 1/cos^2(θ)

tan^2(θ) + 1 = sec^2(θ)

Substitute tan^2(θ) + 1 for sec^2(θ) in original equation:

3(tan^2(θ) + 1) = 2tan^2(θ) + tan(θ) + 4

3tan^2(θ) + 3 = 2tan^2(θ) + tan(θ) + 4

tan^2(θ) – tan(θ) – 1 = 0

tan(θ) = (1 ± √(1–4(1)(–1)))/2 = (1 ± √(5))/2

≈ -0.6180339887499, 1.6180339887499.

θ ≈ -0.553574358897049, 1.017221967897853

tangent has period of pi, so also these two angles:

θ ≈ pi-0.553574358897049, pi+1.017221967897853

≈ 2.58801829469274, 4.15881462148765.

Add 2 pi to the negative angle:

θ ≈ 2 pi - 0.553574358897049 ≈ 5.72961094828254

Round answers to 2 decimal places:

θ ≈ 1.02, 2.59, 4.16, 5.73 radians

on the interval 0≤θ<2π.

Round answers to 2 decimal places.

Pythagorean Identity:

sin^2(θ) + cos^2(θ) = 1

sin^2(θ)/cos^2(θ) + cos^2(θ)/cos^2(θ) = 1/cos^2(θ)

tan^2(θ) + 1 = sec^2(θ)

Substitute tan^2(θ) + 1 for sec^2(θ) in original equation:

3(tan^2(θ) + 1) = 2tan^2(θ) + tan(θ) + 4

3tan^2(θ) + 3 = 2tan^2(θ) + tan(θ) + 4

tan^2(θ) – tan(θ) – 1 = 0

tan(θ) = (1 ± √(1–4(1)(–1)))/2 = (1 ± √(5))/2

≈ -0.6180339887499, 1.6180339887499.

θ ≈ -0.553574358897049, 1.017221967897853

tangent has period of pi, so also these two angles:

θ ≈ pi-0.553574358897049, pi+1.017221967897853

≈ 2.58801829469274, 4.15881462148765.

Add 2 pi to the negative angle:

θ ≈ 2 pi - 0.553574358897049 ≈ 5.72961094828254

Round answers to 2 decimal places:

θ ≈ 1.02, 2.59, 4.16, 5.73 radians

Thank you for the answer. Im just not understanding how you are going from 3sec^{2}Θ to 3tan^{2}Θ+3 using that identity. would you be able to expand on the first part, the rest i understand.

Tara W.

High school physics & engineering teacher, 17 yrs experience

New York, NY

5.0
(16 ratings)

Robert E.

Experienced Physics and Math Tutor

Jamaica, NY

4.9
(505 ratings)

Nikunj P.

Math and Science Specialist, Over 14 Years of Educational Experience

Scarsdale, NY

4.9
(188 ratings)

- Math 9381
- Precalculus 1481
- Algebra 2 3296
- Algebra 1 3941
- Math Help 5202
- Geometry 1813
- Calculus 2163
- Trig 174
- Trigonometric Functions 209
- Prealgebra 167

## Comments

The top posting shows this problem as:

"i need to solve a trig equatiion

"solve the equation on the interval 0≤Θ<2π . round answers to 2 decimal places

"3sec2Θ=2tan2Θ+tanΘ+4"