
Steve S. answered 02/24/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
tan(29°) = h/x
tan(25°) = h/(x+50)
h = x tan(29°)
h = (x+50) tan(25°)
x = h/tan(29°)
(x+50) = h/tan(25°)
x = h/tan(25°) - 50
h/tan(29°) = h/tan(25°) - 50
h/tan(29°) - h/tan(25°) = - 50
h(1/tan(29°) - 1/tan(25°)) = - 50
h = 50/(1/tan(25°) - 1/tan(29°))
h ≈ 146.86049049385 ≈ 147 feet
check:
x = h/tan(29°)
x ≈ 146.86049049385/tan(29°)
x ≈ 264.94333821349035 feet
tan(29°) =? h/x
0.554309051452769 ≈? 146.86049049385/264.94333821349035
0.554309051452769 ≈ 0.55430905145277 √
tan(25°) =? h/(x+50)
0.466307658154999 ≈? 146.86049049385/(264.94333821349035+50)
0.466307658154999 ≈? 146.86049049385/314.94333821349035
0.466307658154999 ≈ 0.466307658155 √
tan(25°) = h/(x+50)
h = x tan(29°)
h = (x+50) tan(25°)
x = h/tan(29°)
(x+50) = h/tan(25°)
x = h/tan(25°) - 50
h/tan(29°) = h/tan(25°) - 50
h/tan(29°) - h/tan(25°) = - 50
h(1/tan(29°) - 1/tan(25°)) = - 50
h = 50/(1/tan(25°) - 1/tan(29°))
h ≈ 146.86049049385 ≈ 147 feet
check:
x = h/tan(29°)
x ≈ 146.86049049385/tan(29°)
x ≈ 264.94333821349035 feet
tan(29°) =? h/x
0.554309051452769 ≈? 146.86049049385/264.94333821349035
0.554309051452769 ≈ 0.55430905145277 √
tan(25°) =? h/(x+50)
0.466307658154999 ≈? 146.86049049385/(264.94333821349035+50)
0.466307658154999 ≈? 146.86049049385/314.94333821349035
0.466307658154999 ≈ 0.466307658155 √