
Aditi L.
asked 02/18/14Solve for x: sin (inverse) x + sin (inverse) 2x = pi/3
2 Answers By Expert Tutors

Steve S. answered 02/18/14
Tutoring in Precalculus, Trig, and Differential Calculus
t = arcsin(x)
p = arcsin(2x)
t + p = pi/3
sin(t+p) = sin(pi/3) =
= sin(t)cos(p)+cos(t)sin(p) = sqrt(3)/2
x sqrt(1-4x^2) + 2x sqrt(1-x^2) = sqrt(3)/2
x^2 (1-4x^2) + 4 x^2 sqrt(1-5x^2+4x^4) + 4x^2 (1-x^2) = 3/4
x^2 - 4x^4 + 4x^2 - 4x^4 + 4 x^2 sqrt(1-5x^2+4x^4) = 3/4
5x^2 - 8x^4 + 4 x^2 sqrt(1-5x^2+4x^4) = 3/4
4 x^2 sqrt(1-5x^2+4x^4) = 8x^4 - 5x^2 + 3/4
16 x^4 (1 - 5x^2 + 4x^4) = (8x^4 - 5x^2 + 3/4)(8x^4 - 5x^2 + 3/4)
16 x^4 - 80x^6 + 64x^8 =
8x^4(8x^4 - 5x^2 + 3/4) - 5x^2(8x^4 - 5x^2 + 3/4) + 3/4(8x^4 - 5x^2 + 3/4)
16 x^4 - 80x^6 + 64x^8 =
64x^8 - 40x^6 + 6x^4
- 40x^6 + 25x^4 - 15/4 x^2
+ 6x^4 - 15/4 x^2 + 9/16
0 = 21 x^4 - 15/2 x^2 + 9/16
0 = 7 x^4 - 5/2 x^2 + 3/16
0 = 112 x^4 - 40 x^2 + 3
h = - -40/(2*112) = 20/112 = 10/56 = 5/28
k = 3 - 112(5/28)^2 = 21/7 - 25/7 = -4/7
x^2 = 5/28 +- sqrt(- -4/(7*112)) = 5/28 +- sqrt(1/(7*7*4)) = 5/28 +- 2/28
x^2 = 1/4 or 3/28
x = +- 1/2 or +- sqrt(21)/14
+sqrt(21)/14 ~= 0.32732683535399, which is what GeoGebra indicates:
http://www.wyzant.com/resources/files/262177/sum_of_arcsines
What’s the logic in discarding the other 3 answers?
I suppose they will not check; i.e., are extraneous (we did square a couple of times).
Anyone want to do the checks; I’m tired.
0.5000 0.5236 1.5708 2.0944 FALSE
-0.5000 -0.5236 -1.5708 -2.0944 FALSE
0.3273 0.3335 0.7137 1.0472 TRUE
-0.3273 -0.3335 -0.7137 -1.0472 FALSE

Parviz F.
02/18/14

Parviz F.
02/19/14

Steve S.
0.5000 0.5236 1.5708 2.0944 FALSE
-0.5000 -0.5236 -1.5708 -2.0944 FALSE
0.3273 0.3335 0.7137 1.0472 TRUE
-0.3273 -0.3335 -0.7137 -1.0472 FALSE
02/19/14

Parviz F. answered 02/18/14
Mathematics professor at Community Colleges
Still looking for help? Get the right answer, fast.
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Steve S.
02/19/14