
Steve S. answered 02/03/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
u(n) = (1 - 1/n)^2, n integer, n > 1
log(u(n)) = 2 log(1 - 1/n)
log(u(n)) = 2 log((n - 1)/n)
log(u(n)) = 2 log(n - 1) - 2 log(n)
log(u(2)) = 2 log(2 - 1) - 2 log(2)
= 2 log(1) - 2 log(2) b/c log(1) = 0
= - 2 log(2)
log(u(3)) = 2 log(3 - 1) - 2 log(3)
= 2 log(2) - 2 log(3)
log(u(2)) + log(u(3)) = - 2 log(2) + 2 log(2) - 2 log(3)
= - 2 log(3)
log(u(4)) = 2 log(4 - 1) - 2 log(4)
= 2 log(3) - 2 log(4)
log(u(2)) + log(u(3)) + log(u(4)) = - 2 log(3) + 2 log(3) - 2 log(4)
= - 2 log(4)
Following the pattern - 2 log(2), - 2 log(3), - 2 log(4):
sum{n=2,10^k}(log(u(n))) = - 2 log(10^k)
= - 2k log(10)
= - 2k b/c log(10) = 1
log(u(n)) = 2 log(1 - 1/n)
log(u(n)) = 2 log((n - 1)/n)
log(u(n)) = 2 log(n - 1) - 2 log(n)
log(u(2)) = 2 log(2 - 1) - 2 log(2)
= 2 log(1) - 2 log(2) b/c log(1) = 0
= - 2 log(2)
log(u(3)) = 2 log(3 - 1) - 2 log(3)
= 2 log(2) - 2 log(3)
log(u(2)) + log(u(3)) = - 2 log(2) + 2 log(2) - 2 log(3)
= - 2 log(3)
log(u(4)) = 2 log(4 - 1) - 2 log(4)
= 2 log(3) - 2 log(4)
log(u(2)) + log(u(3)) + log(u(4)) = - 2 log(3) + 2 log(3) - 2 log(4)
= - 2 log(4)
Following the pattern - 2 log(2), - 2 log(3), - 2 log(4):
sum{n=2,10^k}(log(u(n))) = - 2 log(10^k)
= - 2k log(10)
= - 2k b/c log(10) = 1