sin3x + sinx = cos x
sinx + sin(x + 2x) = cos x
sinx + sinx cos2x + sin2x cos x = cosx
sinx (cos2x + 1) + 2sinx cosx . cosx = cos x
sinx + sin(x + 2x) = cos x
sinx + sinx cos2x + sin2x cos x = cosx
sinx (cos2x + 1) + 2sinx cosx . cosx = cos x
(since 2 cos2x = cos2x +1 and sin 2x = 2sinx cos x)
sinx (2 cos2x) + 2sinxcos2x = cos x
2 sinx cos2x + 2sinxcos2x - cosx = 0
4 sinxcos2x - cosx =0
cosx(4 sinxcosx -1) =0
cosx[2 (2sinxcosx - 0.5)] =0
cosx [2 (sin2x - 0.5)] = 0
Hence cos x = 0 ⇒ x = π/2, 3π/2
or sin2x =0.5 ⇒ 2x = sin-1(0.5) + 2nπ
sin-1 (0.5) = π/6, 5π/6
x = [sin-1(0.5)]/2 + nπ
When n=0, x = π/12, 5π/12
When n=1, x = 13π/12, 17π/12
Hence, the solution set is {π/12, 5π/12, π/2, 13π/12, 17π/12, 3π/2}
Susan B.
06/23/16