Roman C. answered 04/26/16
Tutor
5.0
(851)
Masters of Education Graduate with Mathematics Expertise
|A ∩ B| = 19
|A ∩ Bc| = 42 - 19 = 23
|Ac ∩ B| = 32 - 19 = 13
|Ac ∩ Bc| = 358 - 19 - 23 - 13 = 303
The table of true frequencies:
| A Ac | Total
--------------------------
B | 19 13 | 32
Bc | 23 303 | 326
--------------------------
Total | 42 316 | 358
Use proportions to get the expected numbers.
A: 42/358 = 0.117318
B: 32/358 = 0.089385
Expected table:
| A Ac | Total
---------------------------------------------
B | 3.754190 28.245810 | 32
Bc | 38.245810 287.754190 | 326
---------------------------------------------
Total | 42 316 | 358
---------------------------------------------
B | 3.754190 28.245810 | 32
Bc | 38.245810 287.754190 | 326
---------------------------------------------
Total | 42 316 | 358
Now we can compute the test statistic χ2 = ∑ (O-E)2/E.
(19 - 3.754190)2 / 3.754190 = 61.913415
(13 - 28.245810)2 / 28.245810 = 8.228998
(23 - 38.245810)2 / 38.245810 = 6.077391
(303 - 287.754190)2 / 287.754190 = 0.807754
χ2 = 61.913415 + 8.228998 + 6.077391 + 0.807754 = 77.027558
Rounded to 4 places this is χ2 = 77.0276
By the way, we have df = 1, so the p-value is 1.685891 × 10-18. Thus the evidence is overwhelming that having either disease increases your risk of getting the other one.