1) e2x= 8ex+20 is a quadratic equation. Let u=ex the equation is u2-8u-20=0 so (u+2)(u-10)=0
The solutions are u=-2, ex=-2 not possible for a real value of x, u=10 ex=10 gives x=ln10
2) log5(2x)+log5(x+1)=log5(3x) so log5((2x)(x+1))-log5(3x)=0 or log5((2x)(x+1)/3x)=0 or that
(2x)(x+1)/3x=50=1 gives 2x2+2x-3x=0 or 2x2-x=0 whose solutions are x(2x-1)=0 or x=0 x=1/2 But x=0 not possible
3) log4(x+1)=2+log4(x-1) log4((x+1)/(x-1))=2 or (x+1)/(x-1)=42=16
x+1=16x-16 17=15x x=17/15