Michael L. answered 02/10/16
Tutor
New to Wyzant
Intuitively explains the concepts in Math and Science
Hi Skylar,
Sin(u)=12/13 and cos(u) is negative
cos(u)< 0 in the range: pi/2≤ u ≤3pi/2, 2nd and 3rd quadrants
sin(u) = opp/hyp = 12/13, cos(u) = adj/hyp, find adj
hyp2 = opp2 + adj2
132 = 122 + adj2
adj = ± 5
since cos()< 0, pick adj = - 5 ==>
cos(u) = - 5/13, tan(u) = opp/adj = -12/5
Also sin(pi) = 0, sin(pi/2)=1, cos(pi) = -1, cos(pi/2) =0.
tan(pi) = 0, tan(pi/2)=∞
sin(u+pi) = sin(u)cos(pi)+cos(u)sin(pi)
= (12/13)(-1)+(-5/13)(0)
= - 12/13
cos(u+pi) = cos(u)cos(pi)-sin(u)sin(pi)
= (-5/13)(-1 )-(12/13)(0)
= 5/13
tan(u+pi) = (tan(u)+tan(pi))/(1-tan(u)tan(pi))
tan(u+pi) = (tan(u)+tan(pi))/(1-tan(u)tan(pi))
= (-12/5 + 0)/(1-(-12/5)(0))
=-12/5
sin(u+(pi/2)) = sin(u)cos(pi/2)+cos(u)sin(pi/2)
sin(u+(pi/2)) = sin(u)cos(pi/2)+cos(u)sin(pi/2)
=(12/13)(0)+(-5/13)(1)
= -5/13
cos(u+(pi/2)) = cos(u)cos(pi/2)-sin(u)sin(pi/2)
cos(u+(pi/2)) = cos(u)cos(pi/2)-sin(u)sin(pi/2)
= (-5/13)(0)-(12/13)(1)
=-12/13
tan(u+(pi/2)) = sin(u+(pi/2))/cos(u+(pi/2))
tan(u+(pi/2)) = sin(u+(pi/2))/cos(u+(pi/2))
=(-5/13)/(-12/13)
=5/12