Phuc Gia T. answered 08/03/15
Tutor
4.3
(3)
Physics and Math
1. Sin (5pi/12) = sin(pi/2 - pi/12) = sin(pi/2)cos(pi/12) - cos(pi/2)sin(pi/12) = cos(pi/12)
cos(pi/12) = cos[(pi/6)/2]
Now use half angle formula cos(x) = sqrt[ (1 + cos(2x))/2 ]
cos(pi/12) = sqrt[ (1 + cos(pi/6))/2 ]
pi/6 = 30 degrees so the cosine can be obtained from the 30-60-90 triangle.
2. Use the half angle formula sin(x) = sqrt[ (1 - cos(2x))/2 ]
sin(pi/8) = sin[(pi/4)/2] = sqrt[ (1 - cos(pi/4))/2 ]
pi/4 = 45 degrees so cos(pi/4) can be obtained from 45-45-90 triangle.
3. theta > 135 degrees since tan(theta) = - 3/4 and in second quadrant. So 2theta > 270 degrees, i.e. IV quadrant.
This means cos(2theta) is positive.
cos(2theta) = cos2(theta) - sin2(theta)
Since tan(theta) = - 3/4 (this is a 3-4-5 right triangle) we have cos2(theta) = (4/5)2 and sin2(theta) = (3/5)2