Raymond B. answered 08/16/21
Math, microeconomics or criminal justice
C(q) = 8q +3200
R(p) =-10p^2 +850p
Revenue = pq = -10p^2 + 850p
divide both sides by p
q = -10p + 850
-10p = q-850
p =-q/10 + 85 is the demand curve
Profit = R-C = -10p^2 + 850p - 8q - 3200
=-10p^2 +850p -8(-10p+180) -3200
=-10p^2 +850p-80p - 1440 -3200
=-10p^2 + 770p -4640
for max P take the derivative and set =0
P' = -20p +770 = 0
p = 770/20 = 77/2 = 38.50= profit maximizing price
max P = -10(77/2)^2 + 770(77/2) -4640
= -59290/4 + 59290/2 - 4640
= 49290/4 - 4640
= 49290/4 - 18560/4 = 30730/4 = 7,682.5= max profit
q=-10p + 850
= -10(77/2) +850 = -385+850 = 465 = profit maximizing out put level