AJ L. answered 05/11/23
Patient and knowledgeable Calculus Tutor committed to student mastery
Use Lagrange Multipliers where g(x,y)=3x+2y-100 is our constraint function:
L(x,y,λ) = U(x,y) + λg(x,y) = [ln(x-3)+ln(y)] + λ[3x+2y-100] = ln(yx-3y) + 3xλ + 2yλ - 100λ
∂L/∂x = y/(yx-3y) + 3λ = 1/(x-3) + 3λ
∂L/∂y = (x-3)/(yx-3y) - 2λ = 1/y + 2λ
Find critical points
1/(x-3) + 3λ = 0 --> λ = -1/(3x-9)
1/y + 2λ = 0 --> λ = -1/(2y)
λ = -1/(3x-9)
3x-9 = -1/λ
x-3 = -1/(3λ)
x = -1/(3λ)+3
λ = -1/(2y)
y = -1/(2λ)
g(x,y) = 3x + 2y - 100
0 = 3[-1/(3λ)+3] + 2[-1/(2λ)] - 100
0 = -1/λ + 9 - 1/λ - 100
0 = -2/λ - 91
91 = -2/λ
λ = -2/91
Since we are just looking for the max amount of good y, we don't care about finding x:
y = -1/(2λ)
y = -1/[2(-2/91)]
y = -1/(-4/91)
y = 91/4
y = 22.75
Therefore, the consumer should purchase 22.75 of good y.
Hope this helped!