AJ L. answered 05/11/23
Patient and knowledgeable Calculus Tutor committed to student mastery
Let's rewrite each function into something more understandable and use Lagrange Multipliers:
Max: M(x,y) = 3xy + y2
Constraint: g(x,y) = 2x+y-100
Lagrangian Function: L(x,y,λ) = M(x,y) + λg(x,y) = (3xy+y2) + λ(2x+y-100)
Find critical points
∂L/∂x = 3y+2λ
∂L/∂y = 3x+2y+λ
3y+2λ = 0 --> y = -2λ/3
3x+2y+λ = 0
3x+2(-2λ/3)+λ = 0
3x-4λ/3+λ = 0
3x-λ/3 = 0
3x = λ/3
x = λ/9
g(x,y) = 2x+y-100
0 = 2(λ/9)+(-2λ/3)-100
0 = 2λ/9-2λ/3-100
0 = -4λ/9-100
4λ/9 = -100
λ = -900/4
λ = -225
x = λ/9 = -225/9 = -25
y = -2λ/3 = -2(-225)/3 = 450/3 = 150
Shadow Price = ∂M/∂y = 3x+2y = 3(-25)+2(150) = -75+300 = $225 (per unit of input y)
Hope this helped!