
Juan M. answered 05/01/23
Professional Math and Physics Tutor
We want to show that: (i∇² - ∇∇)r = i/r + xx/r³
1. Calculate ∇²r
Recall that r = |x| = √(xjxj). So, ∂ir = ∂i(√(xjxj)) = xi/r. Now,
∇²r = ∇i∇ir = ∂i∂ir = ∂i(xi/r)
∂i(xi/r) = (δijr² - xixj)/r³
So,
(i∇²r) = i(δijr² - xixj)/r³
2. Calculate ∇∇r
∇∇r = ∇i∇jr = ∂i(∂j r)
We have already computed ∂ir above. Now we will compute ∂j(∂ir):
∂j(∂ir) = ∂j(xi/r) = (δijr² - xixj)/r³
So,
(∇∇r) = (δijr² - xixj)/r³
3. Combine the terms and verify the identity:
(i∇² - ∇∇)r = i(δijr² - xixj)/r³ - (δijr² - xixj)/r³ = 0
The given identity is not correct as both sides are not equal. The correct identity should be:
(i∇² - ∇∇)r = 0