Given data:
- Total mass of mixture = 1.234 g
- Volume of solution = 27.4 mL = 0.0274 L
- Osmotic pressure, Π = 5.25 atm
- Temperature, T = 303 K
- Gas constant, R = 0.08206 L·atm·mol⁻¹·K⁻¹
- Vitamin C (C₆H₈O₆) molar mass = 176.12 g/mol
- Sucralose (C₁₂H₁₉Cl₃O₈) molar mass = 397.64 g/mol
- Both are non-electrolytes (i = 1)
Step 1: Calculate total moles of solute using the osmotic pressure equation
Π = MRT
n(total) = ΠV / RT
n(total) = (5.25)(0.0274) / (0.08206)(303)
= 0.00579 mol
Step 2: Set up equations for the two components
Let
n1=moles of vitamin C
n2=moles of sucralose
n1+n2=0.00579
For each component mass (m) = moles (n) x molar mass
176.12 n1 + 397.64 n2 = 1.234
Step 3: Solve for n1 and n2:
Substitute n2=0.00579−n1:
176.12 n1 + 397.64(0.00579 − n1) = 1.234
176.12 n1+ 2.303−397.64 n1 = 1.234
−221.52 n1 = − 1.069
n1 = 0.00483 mol (vitamin C)
n2 = 0.00579−0.00483 = 0.00096 mol (sucralose)
Step 4: Find masses of each component
mvitC = 0.00483 (176.12) = 0.850 gm
msucralose = 0.00096(397.64) = 0.382 gm
Step 5: Calculate mass percent
%vitamin C = (0.850/1.234) ×100=68.9%
%sucralose = (0.382/1.234) ×100=31.1%
Final Answer:
Vitamin C = 68.9%
Sucralose = 31.1%
| Symbol Meaning | |
| Π | Osmotic pressure (in atmospheres, atm) |
| M | Molarity (mol/L) |
| R | Gas constant (0.08206 L·atm·mol⁻¹·K⁻¹) |
| T | Temperature in kelvins (K) |
| V | Volume of solution in liters (L) |
| n | Number of moles |
| m | Mass (in grams, g) |