
Mike D. answered 06/05/21
Effective, patient, empathic, math and science tutor
Suppose the men have x,y,z and the purse has p
Then
x + p = 2y + 2z
y + p = 3x + 3z
z + p = 5x + 5y
----------------------------------------------------------------------------------------------------------------------------
-x + 2y + 2z = p (1)
3x - y + 3z = p (2)
5x + 5y - z = p (3)
-----------------------------------------------------------------------------------------------------------------------------
Here we have 3 equations in 4 unknowns, so we cannot solve uniquely for x, y, z, p.
You can solve for x, y, z in terms of p. ( just use elimination).
from (1), x = 2y + 2z - p
substitute for x in (2) and (3) giving two linear equations in y, z, and p.
Then solve for y,z and go back and find x