
Christina L. answered 01/12/21
Math tutor with 25 years of experience
∫sin(x)/cos^4(x) dx
Use the substitution dx=1/t • dt where t=cos(x) and t'=-sin(x)
∫sin(x)/cos^4(x) •1/-sin(x) dt
sin(x) cancels out and you get:
∫-1/cos^4(x) dt
Now substitute t for cos(x):
∫-1/t^4 dt
Evaluate the integral:
-(-1/3t^3)
Substitute back t=cos(x)
-(-1/3(cos^3(x)))
Simplify the expression:
1/(3cos^3(x))
Add the constant of integration:
1/(3cos^3(x)) + C
I hope that helps! :)