Raymond B. answered 01/05/21
Math, microeconomics or criminal justice
for n=0, 3^0 > 0^2, 1>0
n=1 3^1> 1^2, 3>1
n=2 3^2>2^2, 9>4
assume 3^k > k^2
try to show 3^(k+1) > (k+1)^2
3^k> k^2
multiply both sides by 3
3(3^k) > 3k^2
add the exponents of 3, 1+k
3^(k+1) >3k^2= 2K^2 + K^2 >K^2 + 2K +1 = (K+1)^2
cancel out the K^2 terms in 2K^2+K^2 > K^2 +2K +1
leaving 2K^2 > 2K + 1
divide by 2K
K> 1 + 1/K for K>2 1+1/K<2
QED for all natural numbers, n,
3^n > n^2