
Patrick B. answered 10/27/20
Math and computer tutor/teacher
Proving 3^(n+1)-2^(n+1)-1>0 is sufficient
The induction step goes
Something like this:
3^(n+1)-2^(n+1)-1
' adds and subtracts 2^n
>= 3^(n+1) -2^(n+1)+2^n-2^n-1
' 3^(n+1)>3^n
>=[3^n-2^n-1]+2^(n+1)+2^n
'By induction hypothesis, 3^n-2^n-2-1>0
>=0+2^(n+1)+2^n
'Factors
>= 2^n(2+1)
'Everthing is positive
= 2^n*3>0