
Patrick B. answered 10/19/20
Math and computer tutor/teacher
1/(1*2) + 1/(2*3) + 1/(3*4) + ... + 1/(n(n+1)) + 1/((n+1)(n+2))
= n/(n+1) + 1/((n+1)(n+2)) =
(n(n+2) + 1) / ((n+1)(n+2)) =
(n^2 + 2n + 1)/ ((n+1)(n+2)) =
(n+1)^2 / ((n+1)(n+2)) =
(n+1)/(n+2)
Louis Alain P.
Which of these expressions: "1/(1*2) + 1/(2*3) + 1/(3*4) + ... + 1/(n(n+1)) + 1/((n+1)(n+2)) = n/(n+1) + 1/((n+1)(n+2)) = (n(n+2) + 1) / ((n+1)(n+2)) = (n^2 + 2n + 1)/ ((n+1)(n+2)) = (n+1)^2 / ((n+1)(n+2)) = (n+1)/(n+2) " go to the left side and which ones go to the right side?10/19/20