
David U. answered 08/07/20
Scientist, Math PhD and Physics PhD, tutoring students/professionals
a) 3๐ฅ โก 1 (๐๐๐ 11) => 4*3 ๐ฅ โก 4*1 (๐๐๐ 11) => 12๐ฅ โก 4 (๐๐๐ 11) => 11๐ฅ+x โก 4 (๐๐๐ 11) => x โก 4 (๐๐๐ 11), i.e.
x=4+11*k with k being any integer. Verification is straightforward: 3*(4+11*k)-1=11*(k+1) and 11 divides 11*(k+1) .
b) 162๐ฅ โก 1 (๐๐๐ 5) => 160x+2x โก 1 (๐๐๐ 5) => 5*2*16x+2x โก 1 (๐๐๐ 5) => 2x โก 1 (๐๐๐ 5) =>
=> 3*2x โก 3*1 (๐๐๐ 5) => 5x+x โก 3 (๐๐๐ 5) => x โก 3 (๐๐๐ 5), i.e. x=3+5*m with m being any integer(verification works in the same manner as in a) ).
Remark: it's not quite clear whether you are considering the two equations separately, or they represent a system of equations. If it is a system of equations then the solution would be the following:
from a) we got x=4+11*k, k-any integer, and from b) we got x โก 3 (๐๐๐ 5) => 4+11*k โก 3 (๐๐๐ 5) =>
11*k โก 4 (๐๐๐ 5) => k โก 4 (๐๐๐ 5) => k=4+5*m, m-any integer, and substituting this k to the solution for a) we obtain the solution of the system: x=4+11*(4+5*m) => x=48+55m (equivalently x=48 (mod 55) ).