Patrick B. answered 06/23/20
Math and computer tutor/teacher
First we must show that 2^k > k for any integer k.
for k=0 ---> 2^0 = 1 > 0
for k=1 ---> 2^1 = 2 > 1
the given induction hypothesis is 2^k > k for integer k>1
2^(k+1) = 2^k * 2 > k*2 = k+k > k+1
Therefore 2^n > n for any integer n
===========================================
For n=2: 2^(1+2) = 2^3 = 8 > 2=2!
For n=3: 2^(1+2+3) = 2^(6) = 64 > 6 = 3!
The given induction hypothesis is 2^(1+2+3+....+n) > n!
statement reason
2^(1+2+3+....+n+(n+1)) =
2^(1+2+3+....+n)*2^(n+1) > property of exponent
n!*2^(n+1) > substitutes induction hypothesis
n! * (n+1) = previous theorem proven above
(n+1)!