Mark M. answered 12/04/19
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
s(t) = t3 - 9t2 + 15t
s'(t) = 3t2 - 18t + 15 = 3(t2 - 6t + 5) = 3(t - 5)(t - 1)
The particle moves in the positive direction when s'(t) > 0.
s'(t) = 0 when t = 1 or 5.
When 0 < t < 1, s'(t) > 0. So, the particle is moving to the right.
when 1 < t < 5, s'(t) < 0. So, the particle is moving to the left
when t > 5, s'(t) > 0. So, the particle is moving to the right.
So, the particle moves in the positive direction when 0<t<1 and when t>5.
-------------------------------------------------------------------
Total distance from t = 0 to t = 9: [s(1) - s(0)] + [s(1) - s(5)] + [s(9) - s(5)]
= [7 - 0] + [7 - (-25)] + [135 - (-25)] = 199 feet
-------------------------------------------------------------------
The particle slows down when s'(t) and s"(t) have opposite signs.
s"(t) = 6t - 18
s"(t) = 0 when t = 3
When 0 < t < 3, s"(t) < 0 and when t > 3, s"(t) > 0.
So, the particle slows down when 0 < t < 1 and when 3 < t < 5.